skip to main content


Search for: All records

Creators/Authors contains: "Barros, Susana C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. ABSTRACT

    The analysis of photometric time series in the context of transiting planet surveys suffers from the presence of stellar signals, often dubbed ‘stellar noise’. These signals, caused by stellar oscillations and granulation, can usually be disregarded for main-sequence stars, as the stellar contributions average out when phase-folding the light curve. For evolved stars, however, the amplitudes of such signals are larger and the timescales similar to the transit duration of short-period planets, requiring that they be modelled alongside the transit. With the promise of TESS delivering of the order of ∼105 light curves for stars along the red giant branch, there is a need for a method capable of describing the ‘stellar noise’ while simultaneously modelling an exoplanet’s transit. In this work, a Gaussian process regression framework is used to model stellar light curves and the method validated by applying it to TESS-like artificial data. Furthermore, the method is used to characterize the stellar oscillations and granulation of a sample of well-studied Kepler low-luminosity red giant branch stars. The parameters determined are compared to equivalent ones obtained by modelling the power spectrum of the light curve. Results show that the method presented is capable of describing the stellar signals in the time domain and can also return an accurate and precise measurement of νmax, i.e. the frequency of maximum oscillation amplitude. Preliminary results show that using the method in transit modelling improves the precision and accuracy of the ratio between the planetary and stellar radius, Rp/R⋆. The method’s implementation is publicly available.1

     
    more » « less
  3. ABSTRACT

    We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine $T_{\rm eff, \star }=4734\pm 67\,\mathrm{ K}$, $R_{\star }=0.726\pm 0.007\, \mathrm{ R}_{\odot }$, and $M_{\star }=0.748\pm 0.032\, \mathrm{ M}_{\odot }$. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of $M_{\rm b} = 13.5_{-1.8}^{+1.7}$ M⊕, whilst TOI-1064 c has an orbital period of $P_{\rm c} = 12.22657^{+0.00005}_{-0.00004}$ d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∼1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of mass–radius space, and it allow us to identify a trend in bulk density–stellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets.

     
    more » « less